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The ATLAS Detector
Very large, general purpose magnetic detecto
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The ATLAS Inner Detector:
Outermost system uses gas-filled 4mm straw

• There are 420K electronics channels, and a TR radiator sup

Intermediate radii contain a silicon strip track
•Four barrel layers and 9 disk layers contain 61 m2 of silicon 

Innermost system is pixel tracker
•Three barrel layers and 3 disk layers contain 1.8 m2 of silico

Forward SCT

Barrel SCT

TRT

Pixel Detectors
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LBL Involvement in ATLAS
Silicon Strip detector:

•Development of production IC testing hardware

•Production and testing of roughly 700 barrel modules

Pixel detector:
•Development of on-detector electronics and test system hard

•Module assembly prototyping, and production of roughly 300

•Local mechanics for disk

•Global mechanical support, support tube, and integration wit

•Low mass services and integration with mechanics

Management of US ATLAS Silicon Activity
Computing and Offline Software:

•Overall architecture of offline environment

•Software Framework to be used as backbone for all off-line s

Physics activities:
•Event Generators and Inner Detector simulation

•Analysis of observability of higher dimensions
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SCT (Semiconductor Tracker) Acti
•Basic building block (module) is built from single-sided p+ on

back to back to create double-sided modules with small ang

•System consists of about 4000 modules, arranged into 4 bar
on each end.

•Lifetime radiation dose is 10MRad worst case.

•LBL, collaborating with UC Santa Cruz, has concentrated on
module construction.
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SCT Electronics
•ATLAS SCT readout is based on a binary scheme in which o

hit is recorded. This approach was pioneered in the US for S
Binary data is stored in a pipeline for L1 latency, zero-suppr

Two parallel developments were carried out:
•CAFE-M (bipolar analog front-end chip from MAXIM) and AB

back-end chip from Honeywell)

•ABCD (BiCMOS combined design from ATMEL/DMILL).

•ABCD was selected. Pre-production wafers fabricated and b
ATLAS PRR in July, and then production should begin later 
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SCT Modules
Modules are the building block of the SCT sys

•LBL effort has focussed on prototyping and precision tooling
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SCT IC Test System
LBL responsible for production wafer test sys

•Total wafer volume will be about 1000 wafers with target ATM

•Three production test sites planned: CERN, RAL, UCSC.

•High speed test system needed, with parametric test capabil
performance will degrade significantly after 10MRad dose, c
beyond specifications to guarantee performance at end of li

First systems 
CERN, RAL, a
this year.

Correlation wi
CERN system

Cross-check b
three sites be
set of 6 wafer

Optimizing tes
achieve throu
(250 die) in 6 
full production
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•System consists of VME interface with intelligence in large FP
control boards mounted closer to probe station, and custom

VME Interface

Probe Card

Digital and Analog
Control Cards
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Silicon Strip Hybrid and Module Ass
Responsibilities:

•Hybrids fabricated, passives loaded in Japan and delivered t

•Hybrid die attach and wire-bonding to be performed in local 

•Hybrid testing and burn-in to be shared between LBL and Sa

•All module mechanical assembly to be done at LBL

•Module testing and burn-in to be done at LBL and Santa Cru

•Barrel Module Final Design Review to take place at CERN n

•LBL to build several pre-production modules this Summer, th

•Production to begin in early 2002. Hybrid and Module assem
2-3/day, with production to take place over roughly 2 years.
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Module Assembly Space (SCT and P
•Thanks to support from LBL Directorate, significant space in

renovated into clean room space:

•Work begun in Late 99. Area is now equiped and functional.
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•Examples of equipment for strip module assembly:

Precision align
station for asse
modules. Uses
assist to achiev
tolerances.

Automatic wire-bonding 
machine used for bonding 
strip hybrids and modules, as 
well as pixel modules.
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•Additional views of clean rooms:

Coordinate M
machine (Sm
in optical surv
modules and
assembly and

View of larger of two rooms, 
with Pixel Module Assembly 
equipment beginning 
installation behind camera.



L B L  D O E  R e v i e w ,  M a y  2 0 0 1

ATLAS at LBNL, May 21 2001    14 of 44

rs below radii of 

wer occupancy, 

s. Innermost layer is 
4000A at 2V.
K. Einsweiler          Lawrence Berkeley National Lab

Pixel Tracker Overview
•LHC radiation levels prohibit operation of silicon strip detecto

about 25cm. Lifetime dose for electronics is 30-50MRad.

•Small cell size (50µ x 300µ - 400µ) of pixel detector yields lo
better signal/noise ratio, and greater radiation tolerance.

•Physical size of system is roughly 1.6m long, with 0.2m radiu
at 5cm radius, and worst-case power consumption is about 
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Significant recent events:
Pixel Baseline Review:

•US ATLAS Pixels has operated as an R&D project until this 
ATLAS held a Baseline Review to decide whether to promo
Pixel effort to an official construction project. 

•The outcome of this review was positive. The US baseline s
a 2-hit system (2 disk layers and 2 barrel layers). This corres
Initial Detector configuration for first operation. The full 3-hit
upgrade proposal presently being formulated.

Deep submicron electronics effort
•In the past year, we have experienced a second failure of ou

vendor (ATMEL/DMILL) to manufacture our FE chip with ac
major cost increase from our second vendor (Honeywell). T
viable, traditional solution to manufacturing our on-detector 

•In parallel, we had begun investigations of converting our de
using 0.25µ process and rad-tolerant layout techniques. Thi
up to top priority in Sept 00, and should shortly be providing
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Insertable Pixels:
•The failure of our two rad-hard vendors to produce viable ele

major delays from our initial project schedule. In response, 
modified the mechanical design and installation of the pixel 
insertion of the complete system at the latest possible date:
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Pixel Mechanics
LBL now has the lead role in pixel mechanics
Responsibilities include:

•Disk Structures

•Global Pixel Support Frame

•Support Tube

•Service Support Panels for power and cooling

•Other Items (low mass services, final assembly/installation) 
European collaborators

•Still other areas are not covered (Installation Tooling and oth
(and should) carry these, but funding is insufficient.

Schedule:
•The mechanics effort is quite mature, and will be starting pro

the electronics, in order to meet aggressive schedule. 

•ATLAS PRR (Production Readiness Review) for Local Supp
CDR (Conceptual Design Review) for Global Support struct

•Production of first elements (disk sectors) is planned to begi
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Disk Structures
•Disks are composed of 8 Sectors that provide mechanical su

and Support Rings onto which the Sectors are mounted.

•Six modules are mounted on each sector, three on each side
achieved by displacing modules on one side by module half

•Sectors are attached to Support Ring at their outer radius on
attached directly to Global Support frame.

•Sector design consists of thin Carbon-Carbon plates separat
and thin-wall Al cooling pipes (evaporative C3F8 cooling us

•Extensively prototyped. Sectors are ready to begin productio
design of Support Rings is complete, and design of fabricat
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Global Pixel Support Frame
•Ultra-stable, low mass structure which must provide integrat

cooling for more than 10kW. Coolant temperature is -25C.

•Support Rings for disks, and Support Shells for barrel provid
support for Local Supports (Sectors and Staves).

•Major integration task to integrate power/signal cabling and 
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Support Tube
•Three piece composite structure with integrated rails to supp

and Service Panels. Beam pipe is now integrated with/supp

•First version of design complete, undergoing static and dyna
Critical to control vibrational properties to preserve pixel alig
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Support Tube is complex integration problem
Pixel Detector services integrated inside, complex support condit

Constructing a complete mockup (in old Bevatron) to understand
assembly and installation sequence, and iterate design if necessa
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Service Support Panels for power and 
Integration of low mass services is complex:

•Present baseline calls for possible in-situ installation of B-lay
break. This requires accessible services on both ends of Gl

•Concept involves panels integrating LV, HV, optical, and coo
Panels slide along rails inside Support Tube. First prototype
already been built as Flex circuit with many folds to achieve
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Pixel Electronics
LBL has a leading role in the pixel on-detecto

•First complete pixel FE chip prototypes produced in 98 (LBL
extensive lab and testbeam studies in 98/99, validating basi

•LBL has lead in FE chip design, and does overall electronics

Active matrix of 18x1
each 50µ x 400µ.

Die size of 7.4mm x

Inactive region conta
buffering, control, an
housekeeping functi

Final version has les
bondable pads at bo
high level of integrat

Must be active to thr
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Complete on-detector electronics consists of
•FE chip described above, 16 of which are used for a module

•MCC (module controller chip) performs event building on 16
streams, and other module housekeeping functions, providin
module (data in, data out, clock). Synthesized design, deve

• Opto-chips: VDC (VCSEL Driver Chip) to drive data off-dete
decode encoded clock/control stream. A joint development 

•Recent engineering runs all have complete chipset (DMILL c

FE-D2
MCC-D2

DO
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Progress towards 0.25µ Pixel FE chip
•Adopted dual process approach (TSMC/IBM) to provide prot

production flexibility. Production likely to be IBM, due to CER

•Submitted first digital test chip to TSMC in Jan 01. Limited fu
works roughly as expected.

•Submitted serious Analog Test chip to both IBM and TSMC in
chip arrived last week.

Chip contains roughly final d
for all required analog block

It contains 20 pixels and the
load capacitors and leakage

It contains 15 8-bit DACs an
reference, providing comple
analog inputs) adjustment o
currents.

Contains prototypes of critic
circuits as well.

Conservatively designed to 
improve lifetime and reduce
overvoltages.
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Presently integrating complete FE chip:
•Comparison of designs in DMILL and 0.25µ:

•New 0.25µ design has significant additional functionality, inc
DACs, a two stage front-end, and a differential back-end.
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New 0.25µ design improvements:
•Replaced 3T DRAM cell with 8T differential SRAM cell. Time

and data/address outputs are now fully differential for reduc
increased speed.

•Moved TOT calculation function from bottom of chip to bottom
simple digital timewalk correction (charges below given thre
25ns), and filtering of low TOT hits if desired.

•Increased EOC buffering per column pair from 24 in DMILL (
outer pixel layers) to 40/64 in 0.25µ, which is more than ade
occupancies.

•Integrated all analog functions tightly to bottom of column to
immunity.

•Using extensive automatic place and route tools for logic blo
column, and bottom of chip, to reduce layout time and focus
critical storage blocks.

•Included all SEU-tolerant FF for configuration information (1
roughly 200 bits at bottom of chip), so do not expect problem
carefully analyzed all state machines for bit-flip impacts, and
transient effects.

•Using more sophisticated power and timing analysis tools to
performance of the design.
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Near Term Goals
•Test Analog Test chip from both TSMC and IBM, irradiate at 

and CERN PS during next 2 months.

•Submit complete engineering run (12  200mm wafers) by en
contain pixel FE chip, MCC chip, opto-chips (VDC and DOR
minor test chips. It will provide a complete 0.25µ chipset for
startign in Fall 01, and continuing into the first half of 2002.

•After complete lab and testbeam characterization of these ch
irradiation of complete pixel modules, expect to submit a sec
chips in mid-2002.

•Production should begin in 2003. Intend to deliver complete 
installation into ATLAS by end 2005.
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Longer Term Goals:
•The performance of the pixel B-layer largely determines the 

resolution of the tracker. Therefore, it is critical for this layer t
the ATLAS physics reach depends strongly on its capabilitie

•Expect that this layer will be upgraded whenever the techno
significant performance increment.

•It is also possible that we have underestimated the occupan

encountered at 1034 luminosity, and better performance will

•We are already working with the next generation CMOS proc
(0.18µ), which would allow further improvements in pixel siz
functionality. By the time of an upgrade to the B-layer, we wo
with 0.13µ process with 8 metal layers (MOSIS availability e

•There are many technical issues to address, including radiat
lifetime issues (thinner gate oxide could lead to Gate Ruptur
effects increase, basic ingredients like gate oxide could cha

•There are also many design issues to address, particularly in
becomes more difficult to do analog design with reduced rat
to device VT, and leakage effects in very thin oxides becom

•In order to be on the knowledge and experience path to carr
upgrade, R&D needs to start as soon as the production chip
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Irradiation Capabilities at LBL
LBL 88” Cyclotron is very useful for CMOS irr

•Has been used to characterize DMILL chips earlier this year
available only form May to Nov each year, so LBL capability

•We plan to irradiate our TSMC/IBM Analog Test chips at the
provide us critical feedback before submission, before data 

FE-D2S being
Cyclotron usin
to irradiate at a

Energy of 55 MeV is fine for 
total dose, and adequate for 
SEU studies.
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Electronics Test System
•LBL/Wisconsin developed original test system in 97/98. This

used for all wafer probing, and characterizing of single chips
lab and the testbeam. There are 16 systems distributed thro
common test system has been critical for progress in electro
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•Second generation now designed and starting fabrication. In
experience from present system, and is optimized to cover 
production needs with one modular set of hardware. This sp
wafer probing, to lab and testbeam characterization, to produ
and burn-in.

•Includes upgrades to test capability, including variable clock 
amplitude and phasing of critical input signals, and optimize

Ne
loa

Inc
inc
RA
cha
to 6
fac
cou
crit
for 
ope
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Pixel Modules
LBL has major role in Module Prototyping and

•Built many “single chip” devices using smaller sensors for sm
Some studies were done with irradiated sensors and rad-so

•Built about 10 modules with IZM solder bumps, several as “b
interconnections on PC board, several as “Flex” modules, o
modules. Some, but not all, of these modules work very we
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Next Steps in Module Prototypin
Real modules:

•Build up a complete half-sector to explore electrical integrati

•So far, one module has been completed and assembled ont
prototype. It has been characterized in detail:

•Working on assembly of next two modules. We are comparin
vendors, and different bump-bonding vendors. This work wi
the next few months, but will be repeated with new 0.25µ el
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Dummy modules:
•Collaborate in extensive “dummy module” program. US has 

“dummy chip” wafers. Germany supplies “dummy sensors”. 
are metalized onto wafers to allow testing bumping connect

•A total of 100 modules, 50 with each bumping vendor, will be
vendor production capability.

•These prototypes will be mechanically completely realistic, a
exercising production tooling and assembly concepts, plus m
tests of mechanical and thermal issues for complete module
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Computing and Offline Software
Overall Architecture:

•Architecture Task Force created in ATLAS in 99, following ov
Review. Significant LBL participation (Quarrie and Shapiro), 
for ATLAS, and recommended setting up Architecture team

•Architecture team has five members, three from LBL, includi
Architect.

•Two parallel goals: develop overall software Framework, and
use cases to define requirements. Initial goal was Fall 2000
prototype.

ATLAS Framework (ATHENA):
•New object-oriented framwork, to be used for all off-line activ

simulation, reconstruction, and physics analysis.

•Also to be used in Event Filter (formerly known as Level 3 Tr

•Critical path for all software activities, with aggressive initial 

•Decided to adopt LHC-B GAUDI framework as starting point
productive collaboration between these two experiments on
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Initial Framework prototypes and mile
May 2000 was first generation and included:

•Ability to read Physics TDR data (LBL)

•Ability to execute sequence of user modules, including dyna
modules, and sequences with branches and filters (LBL).

•Prototype Event Generator framework (LBL)

•LArg reconstruction and XKalman tracking reconstruction (B

•First support for fast simulation packages (London groups)

Feedack included:
•Series of three Event Data Model workshops in May, July, an

•Detector Description workshop in August 2000

•Tutorials: two at CERN and two at LBL, one at Frascati

•Architecture Review Committee (ARC), met in July, August, 
December 2000, and March 2001. Will deliver their report s
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Sept 2000 was set for second set of milestone
•Include use case analysis (LBL)

•Include ATHENA in ATLAS release machinery (LBL)

•Event Data Model prototype (LBL+BNL)

•Interactive Scripting prototype (LBL)

•Physics Analysis output to ROOT (LBL)

•Event Generators deployed (LBL)

•Objectivity I/O prototype (ANL+Orsay)

Dec 2000 was third set of milestones:
•Pileup prototype (LBL)

•Particle Properties service (FNAL + LBL)

•Physics Output to ROOT deployed (LBL)

•Objectivity I/O partially deployed (ANL+Orsay)

•Event Data Model, Interactive Scripting, and Fast Simulation

Deliverable milestone dates basically all met
•Now a large and active developer community.

•C. Tull at CERN for one year, M. Marino to be at CERN for tw
have one person at all times to provide support.
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Basic Functionality:
•Data is read from Permanent Store into Transient Store. Sys

from choice of database (Objectivity, ...)

•Data Objects are accessed from Transient Store

•Algorithms are controlled by framework and act on data. Exa
Event Simulation, Pattern Recognition, or Higgs Analysis. W
initialized and executed by framework.

•Services are globally available components to be used by al
Histogramming, Random Numbers, Visualization, ...)

Next milestones:
•Use of ATHENA to prepare results for ATLAS Physics works

•Geant4 Integration prototype

•Visualization prototype

•Monitoring and Book-keeping prototypes

Prepare for Mock Data Challenge 1 (5% data s
•Production to start in Spring 2002.

•All prototypes discussed above should be fully deployed

•Mock Data Challenge 2 will follow late in 2002.
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Structure of GAUDI/ATHENA:
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Physics Activities
Event/Physics Generators:

•LBL leads ATLAS Monte Carlo group, and is coordinating the
generators, and their interfacing to ATHENA using HEPMC 

•Interface supports use of one generator for high PT event an
MinBias.

•Generators supported so far (by various individuals in ATLA
ISAJET, HERWIG, TAUOLA, VECBOS, and GENZ (old ATL

•Interface to ATHENA includes support for ATLAS-specific tu
to pass and modify parameters at run-time.

•Significant effort required for support and integration of phys
Additional LBL manpower needed soon, or responsibilities w
dropped.



L B L  D O E  R e v i e w ,  M a y  2 0 0 1

ATLAS at LBNL, May 21 2001    42 of 44

 R (Arkani-Hamed...)

aller, and still get the 
s. 

 with a gluon or 

e reach in mass 
ber of extra 
).

 emerge above SM 
t very large 

sensitivity 
 R as large as 10µ
K. Einsweiler          Lawrence Berkeley National Lab

Search for extra dimensions:
•Many theories (e.g. strings) predict extra dimensions of size

•A larger value of R allows the mass scale for gravity to be sm
right strength. Models lead to “towers” of Graviton excitation

•In simplest models, these G can be produced in association
photon, leading to missing energy signatures.

Indication of th
(MD) and num
dimensions (δ

Signal starts to
backgrounds a
ET(miss).

This range of 
corresponds to
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Other physics studies, concentrating on SUS
•Significant work done for Physics TDR, indicating possibilitie

SUSY physics with ATLAS.

•Ongoing studies on SUSY models with heavy squarks and s
suppressing flavor changing currents), in which LHC would 
“lighter” gluino and other gauginos. Particularly hard case to

•Many SUSY models produce lots of tau’s in their decay chai
then carries important information about sparticle masses a
simulation study is ongoing to quantify to what extent this is

Studies of LHC Upgrades:
•Request from CERN management to study LHC upgrades a

CERN plan. Hinchliffe is the only US participant for ATLAS.

•Directions include increase of E to 28 TeV and increase of L

•Pileup limits some physics at very high L, even for ideal dete
include jet tagging in forward region, and ET(miss) resolutio

•Studies just beginning, but appears to be little additional phy

scenario unless detector performance can be maintained cl
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Issues for successful LBL ATLAS effort
•Role of labs like LBL in the US LHC effort is critical. US ATL

the three “non-accelerator” labs (ANL, BNL, LBL) for its con
International HEP collaboration requires that they remain he

•Pixel activity is a partnership with base program, capitalizing 
teams in mechanics and electronics. Without a healthy base
consequently ATLAS pixels) will fail.

•Computing effort is very strong, based on internationally uniq
US ATLAS computing is underfunded, and our strong base 
prevents us from making any significant base committment 
core software is critical for ATLAS, and improved future sup

•Physics simulation effort is strong, and also needs base reso
critical mass, and help pave the way for eventual major LBL
Due to other constraints above, this is not happening.

•As of early June, LBL ATLAS group will have 2.5 postdocs (0
CDF), and one UCB grad student (thesis will be on CDF). S
must begin significantly ramping up this younger componen
create a viable LBL ATLAS research program.

Continued erosion of LBL base support threat
ATLAS effort.
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